210

Dandekar T, Argos P (1997) Applying experimental data to protein fold prediction with the genetic

algorithm. Protein Eng 10(8):877–893. (*The three Dandekar-Argos references describe how far

one can fold and correctly predict protein structures using a robust and intelligent search strat­

egy, genetic algorithms. Of course, one can also use this method for completely different prob­

lems [see. Goldberg, David Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, 1989, the classic textbook in the field].)

Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide

prediction method. J Mol Biol 338(5):1027–1036. (PubMed PMID: 15111065 * Vergleicht und

kombiniert TMHMM und SignalP.)

Kann S, Kunz M, Hansen J et al (2020) Chagas disease: detection of Trypanosoma cruzi by a new,

high-specific real time PCR. J Clin Med 9(5):1517. https://doi.org/10.3390/jcm9051517

Maccorduck P (2004) Machines who think: a personal inquiry into the history and prospects of

artificial intelligence. A K Peters, Ltd. S 482 (ISBN 1-56881-205-1)

Mostosi P, Schindelin H, Kollmannsberger P, Thorn A (2020) Haruspex: a neural network for the

automatic identification of oligonucleotides and protein secondary structure in cryo-electron

microscopy maps. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202000421

Sahlol AT, Kollmannsberger P, Ewees AA (2020) Efficient classification of white blood cell leu­

kemia with improved swarm optimization of deep features. Sci Rep 10(1):2536. https://doi.

org/10.1038/s41598-­020-­59215-­9

Schneider A, Hommel G, Blettner M (2010) Lineare regressionsanalyse. Dtsch Arztebl Int

107(44):776–782. https://doi.org/10.3238/arztebl.2010.0776

Schweitzer S, Kunz M, Kurlbaum M et al (2019) Plasma steroid metabolome profiling for the diag­

nosis of adrenocortical carcinoma. Eur J Endocrinol 180(2):117–125. https://doi.org/10.1530/

EJE-­18-­0782

Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR,

Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D,

Kavukcuoglu K, Hassabis D (2020) Improved protein structure prediction using potentials from

deep learning. Nature 577(7792):706–710. https://doi.org/10.1038/s41586-­019-­1923-­7

Silver D, Huang A, Maddison CJ (2016) Mastering the game of Go with deep neural networks and

tree search. Nature. 529(7587):484–489. https://doi.org/10.1038/nature16961. (PMID 26819042

* AlphaGo wurde von Google DeepMind in London programmiert, konnte ab Oktober 2015

ohne Handicap gegen professionelle Spieler gewinnen und schlug im Dezember 2016 Lee Sedol,

einen 9-Dan-Go-Spieler)

Singh R, Mukhopadhyay K (2011) Survival analysis in clinical trials: basics and must know areas.

Perspect Clin Res 2(4):145–148. https://doi.org/10.4103/2229-­3485.86872

Sommer C, Gerlich DW (2013) Machine learning in cell biology – teaching computers to recognize

phenotypes. J Cell Sci 126(Pt 24):5529–5539. https://doi.org/10.1242/jcs.123604

Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S,

Carfrae LA, Bloom-Ackermann Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW,

Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ (2020) A deep learning

approach to antibiotic discovery. Cell 181(2):475–483. https://doi.org/10.1016/j.cell.2020.04.001.

(Erratum for: Cell 2020 Feb 20; 180(4):688–702.e13)

Tarca AL, Carey VJ, Chen XW, Romero R, Drăghici S (2007) Machine learning and its applications

to biology. PLoS Comput Biol 3(6):e116. https://doi.org/10.1371/journal.pcbi.0030116

Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C,

Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger

O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy

E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D

14  We Can Think About Ourselves – The Computer Cannot