210
Dandekar T, Argos P (1997) Applying experimental data to protein fold prediction with the genetic
algorithm. Protein Eng 10(8):877–893. (*The three Dandekar-Argos references describe how far
one can fold and correctly predict protein structures using a robust and intelligent search strat
egy, genetic algorithms. Of course, one can also use this method for completely different prob
lems [see. Goldberg, David Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989, the classic textbook in the field].)
Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide
prediction method. J Mol Biol 338(5):1027–1036. (PubMed PMID: 15111065 * Vergleicht und
kombiniert TMHMM und SignalP.)
Kann S, Kunz M, Hansen J et al (2020) Chagas disease: detection of Trypanosoma cruzi by a new,
high-specific real time PCR. J Clin Med 9(5):1517. https://doi.org/10.3390/jcm9051517
Maccorduck P (2004) Machines who think: a personal inquiry into the history and prospects of
artificial intelligence. A K Peters, Ltd. S 482 (ISBN 1-56881-205-1)
Mostosi P, Schindelin H, Kollmannsberger P, Thorn A (2020) Haruspex: a neural network for the
automatic identification of oligonucleotides and protein secondary structure in cryo-electron
microscopy maps. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202000421
Sahlol AT, Kollmannsberger P, Ewees AA (2020) Efficient classification of white blood cell leu
kemia with improved swarm optimization of deep features. Sci Rep 10(1):2536. https://doi.
org/10.1038/s41598-020-59215-9
Schneider A, Hommel G, Blettner M (2010) Lineare regressionsanalyse. Dtsch Arztebl Int
107(44):776–782. https://doi.org/10.3238/arztebl.2010.0776
Schweitzer S, Kunz M, Kurlbaum M et al (2019) Plasma steroid metabolome profiling for the diag
nosis of adrenocortical carcinoma. Eur J Endocrinol 180(2):117–125. https://doi.org/10.1530/
EJE-18-0782
Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR,
Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D,
Kavukcuoglu K, Hassabis D (2020) Improved protein structure prediction using potentials from
deep learning. Nature 577(7792):706–710. https://doi.org/10.1038/s41586-019-1923-7
Silver D, Huang A, Maddison CJ (2016) Mastering the game of Go with deep neural networks and
tree search. Nature. 529(7587):484–489. https://doi.org/10.1038/nature16961. (PMID 26819042
* AlphaGo wurde von Google DeepMind in London programmiert, konnte ab Oktober 2015
ohne Handicap gegen professionelle Spieler gewinnen und schlug im Dezember 2016 Lee Sedol,
einen 9-Dan-Go-Spieler)
Singh R, Mukhopadhyay K (2011) Survival analysis in clinical trials: basics and must know areas.
Perspect Clin Res 2(4):145–148. https://doi.org/10.4103/2229-3485.86872
Sommer C, Gerlich DW (2013) Machine learning in cell biology – teaching computers to recognize
phenotypes. J Cell Sci 126(Pt 24):5529–5539. https://doi.org/10.1242/jcs.123604
Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S,
Carfrae LA, Bloom-Ackermann Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW,
Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ (2020) A deep learning
approach to antibiotic discovery. Cell 181(2):475–483. https://doi.org/10.1016/j.cell.2020.04.001.
(Erratum for: Cell 2020 Feb 20; 180(4):688–702.e13)
Tarca AL, Carey VJ, Chen XW, Romero R, Drăghici S (2007) Machine learning and its applications
to biology. PLoS Comput Biol 3(6):e116. https://doi.org/10.1371/journal.pcbi.0030116
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C,
Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger
O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy
E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D
14 We Can Think About Ourselves – The Computer Cannot